All you ever wanted to know about DFQ

  1. DFQ classification: ODE/PDE, single/system, First /Second order, Linear/Nonlinear, homogeneous/inhomogeneous
  2. Geometric interpretation: $y'(x)=f(x,y(x))$ is the slope of $y(x)$ curve at position $(x,y)$. Plot Slope, connect line segments
  3. First Order Linear ODE:
    \begin{displaymath}
y'(x)+ p(x) y(x) = g(x),\end{displaymath} (21)

    for given $p(x),g(x)$. To solve, rewrite as

    \begin{displaymath}\frac{d}{d x}\left( y(x) e^{\int p(x) d x} \right) = g(x) e^{\int p(x) d x},\end{displaymath}

    which is equivalent to (21), but easy to solve.
  4. Separable Equation

    \begin{displaymath}y'(x)=\frac{M(x)}{N(y)},\end{displaymath}

    with the implicit solution

    \begin{displaymath}\int M(x) d x = \int N(y) d y,\end{displaymath}

  5. Radioactive decay, or compound interest

    \begin{displaymath}\frac{d y(t) } {d t} = \alpha y(t),\end{displaymath}

    with the solution

    \begin{displaymath}y(t)=y(t=0)e^{\alpha t},\end{displaymath}

    for positive or negative $\alpha$.
  6. Compound interest with salary, or mixing

    \begin{displaymath}\frac{d y(t) } {d t} = \alpha y(t) +s, y(0)=y_0\end{displaymath}

    with the solution

    \begin{displaymath}y(t) = y_0 e^{\alpha t} + \frac{s}{\alpha}(e^{\alpha t} -1).\end{displaymath}

  7. Logistic Model

    \begin{displaymath}\frac{d N}{d t} = r (1 - \frac{N}{k})N,\end{displaymath}

    with the solution

    \begin{displaymath}N(t) = \frac{k}{1-e^{-r(t+C)}}.\end{displaymath}

  8. Phase Plane To solve

    \begin{displaymath}y'(x) = f (y(x)),\end{displaymath}

    plot $y'(x)$ versus $y(x)$.

    Then

    if $y'(x)=0$, then $y(x)={\rm const},$
    if $y'(x)>0$, then $y(x) {\rm increases},$
    if $y'(x)<0$, then $y(x)={\rm decreases}.$

  9. Second order Linear ODE:

    \begin{displaymath}y''(x)+p(x)y'(x)+q(x)y(x)=g(x).\end{displaymath}

  10. Wronskian = $y_1(x)y_2'(x)-y_2(x)y_1'(x).$
  11. Theorem: if $W(x)\ne 0$ for solutions $y_1(x)$ and $y_2(x)$, then

    \begin{displaymath}y(x) = C_1 y_1(x)+C_2 y_2(x),\end{displaymath}

    is the general solution of the homogeneous second order linear ODE.

  12. \begin{displaymath}e^{i x } = \cos{x}+i \sin{x}.\end{displaymath}

  13. Second order linear homogeneous ODE with constant coefficients

    \begin{displaymath}a y''(x)+ b y'(x) + c y(x) = 0.\end{displaymath}

    look for solutions as

    \begin{displaymath}y(x) = e^{r x}, \end{displaymath}

    and get a quadratic equation for $r$:

    \begin{displaymath}a r^2 + b r + c = 0,   r_{1,2}=\frac{-b\pm \sqrt{b^2 - 4 a c}}{2 a}.\end{displaymath}

    There are three possibilities:
    1. Both roots are real, and different, then general solution is

      \begin{displaymath}y(x) = c_1 e^{r_1 x}+ c_2 e^{r_2 x}.\end{displaymath}

    2. Both roots are real and equal, then the general solution is

      \begin{displaymath}y(x) = C_1 e^{ r x} + C_2 x e^{r x}.\end{displaymath}

    3. Both roots are complex, and are complex conjugate of each other:

      \begin{displaymath}y(x) =C_1 \sin {\Im{r}x}e^{\Re{r}x}+ C_2 \cos{\Im{r}x} e^{\Re{r}x}.\end{displaymath}

  14. Euler Equation Consider equation of the form

    \begin{displaymath}(x-x0)^2 y''(x) + \alpha (x-x0) y'(x) + \beta y(x) = 0,\end{displaymath}

    look for a solution in a form

    \begin{displaymath}y(x) = \vert x- x0\vert^\lambda,\end{displaymath}

    and obtain quadratic equation for $\lambda$:

    \begin{displaymath}\lambda(\lambda - 1) + \alpha \lambda + \beta = 0.\end{displaymath}

    Then there are three cases:
    1. Two real roots which are not equation to each other with the general solution

      \begin{displaymath}y(x) = C_1 \vert x-x0\vert^{\lambda_1} + C_2 \vert x-x0\vert^{\lambda_2}.\end{displaymath}

    2. Two real roots which are equal
    3. Two complex conjugate roots

      \begin{displaymath}\lambda = \mu \pm i \omega,\end{displaymath}

      with the general solution

      \begin{displaymath}y(x) = C_1 \vert x-x0\vert^\mu \cos(\lambda\log\vert x-x0\vert) +
C_2 \vert x-x0\vert^\mu \sin(\lambda\log\vert x-x0\vert).\end{displaymath}

  15. The concept of Wronskian
  16. linear second order ODE with RHS (non homogeneous equations).
    The general solution of the inhomogeneous equation is the general solution of corresponding homogeneous equation plus a special solution of the inhomogeneous equation
  17. Method of undetermined coefficients to find inhomogeenous solution
  18. Method of variation of a parameter to find inhomogeneous solution
  19. Oscillators and oscillations
    1. free oscillator
    2. Damped oscillator (over/critically/under damped oscillators)
    3. Forced oscillator (resonant and nonresonant forcing)
    4. Damped and Forced oscillator. Method of complex amplitude.
  20. Fourier Series
    1. Sine Fouries Series

      \begin{displaymath}A_n = \frac{2}{L}\int\limits_0^L f(x)\sin(\frac{n \pi x}{L}) d x,\end{displaymath}

      and

      \begin{displaymath}F(x) = \sum\limits_{n=1}^\infty A_n \sin(\frac{n \pi x}{L}).\end{displaymath}

    2. Cosine Fouries Series

      \begin{displaymath}B_n = \frac{2}{L}\int\limits_0^L f(x)\cos(\frac{n \pi x}{L}) d x,\end{displaymath}

      and

      \begin{displaymath}F(x) = \frac{B_0}{2}+\sum\limits_{n=1}^\infty B_n \cos(\frac{n \pi x}{L}).\end{displaymath}

    3. Full Fourier Series

      \begin{displaymath}A_n = \frac{1}{L}\int\limits_{-L}^L f(x)\sin(\frac{n \pi x}{L}) d x,\end{displaymath}

      and

      \begin{displaymath}B_n = \frac{1}{L}\int\limits_{-L}^L f(x)\cos(\frac{n \pi x}{L}) d x,\end{displaymath}

      and

      \begin{displaymath}F(x) =
\sum\limits_{n=1}^\infty A_n \sin(\frac{n \pi x}{L})+...
...c{B_0}{2}+\sum\limits_{n=1}^\infty B_n \cos(\frac{n \pi x}{L}).\end{displaymath}

    4. Odd and Even functions. Odd and even extensions. Periodic extension.
  21. Boundary Value Problems
  22. Heat Equation
Dr Yuri V Lvov 2017-12-10