Homework Six

58


\begin{displaymath}R=5, \tan \delta = \frac{4}{3}.\end{displaymath}

59

\begin{displaymath}R=2, \delta = -\frac{\Pi}{3}.\end{displaymath}

60

\begin{displaymath}U = -\frac{1}{8\sqrt{3}}e^{-2 t} \sin (2\sqrt{3})\end{displaymath}


\begin{displaymath}T = \frac{\pi}{2\sqrt{3}}{\rm  sec}.\end{displaymath}


\begin{displaymath}\tau = \frac{1}{2}\ln\frac{150}{\sqrt{31}}= 1.59 {  sec}.\end{displaymath}

61


\begin{displaymath}u(t) = \sqrt{2}\sin\sqrt{2}t.\end{displaymath}

$u$, $\dot u$ is an ellipse with clockwise rotations

62


\begin{displaymath}u(t) =
\frac{16}{\sqrt{127}}e^{-\frac{t}{2}}\sin\left(\frac{\sqrt{127}}{8}t\right).\end{displaymath}

$u$, $\dot u$ is an inward going spiral with clock wise rotations, use computer to plot this curve.

63

(a)

\begin{displaymath}\ddot u + 10 \dot u + 100 u = 2 \sin \frac{t}{2}.\end{displaymath}


\begin{displaymath}u = \frac{1}{250\sqrt{3}}e^{-2 t} \sin 5\sqrt{3}t +
\frac{1}{...
... + \frac{1}{50}\sin\frac{t}{2} - \frac{1}{1000}\cos\frac{t}{2}.\end{displaymath}

(b)

Terms with $e^{-2 t}$ are transient, others are steady.

(d)

\begin{displaymath}\omega = 5\sqrt{2}.\end{displaymath}

64

\begin{displaymath}u = A \cos \omega t + B \sin \omega t,\end{displaymath}


\begin{displaymath}A = \frac{2(2-\omega^2)}{(2-\omega^2)^2 + (\frac{\omega}{4})^2},\end{displaymath}


\begin{displaymath}B = \frac{\omega}{2}\frac{1}{(2-\omega^2)^2 + (\frac{\omega}{4})^2}.\end{displaymath}


\begin{displaymath}R = \frac{2}{\sqrt{(2-\omega^2)^2 + (\frac{\omega}{4})^2}}/\end{displaymath}


\begin{displaymath}\omega_{\rm max} = \frac{3\sqrt{14}}{8},\end{displaymath}


\begin{displaymath}R_{\rm max} = \frac{64}{\sqrt{127}}.\end{displaymath}

Dr Yuri V Lvov 2017-12-10