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For a surface interaction linear in the order parameter and favoring an orientation in which liquid-
crystalline molecules lie parallel to the surface (but which is independent of whether the orientation is
uniaxial or isotropic in the bounding plane), a symmetry-breaking phase transition in a surface layer is
possible at temperatures above that of the bulk isotropic to nematic transition. At the surface transition,
the high-temperature in-plane isotropic state becomes unstable with respect to a biaxial phase, the tran-
sition being continuous and therefore of the Berezinskii-Kosterlitz-Thouless (BKT) type. It is expected
to occur for intermediate surface couplings but not at very weak or very strong couplings. The bulk
phase always remains disordered. The BKT transition boundary is calculated explicitly and the results
are compared with earlier theoretical studies on systems with linear or quadratic surface interaction po-
tentials. Numerical estimates indicate that systems having the required linear surface potentials can be
prepared and possible techniques for observing a BK T-type phase transition are discussed.

PACS number(s): 61.30.Gd, 64.70.Md, 68.45.—v

I. INTRODUCTION

It is well known that rodlike nematic liquid-crystal sys-
tems undergo a (first-order) phase transition from an iso-
tropic to a uniaxially ordered state at a critical tempera-
ture T,. However, while no bulk ordering occurs when
T > T,, there will be local ordering in the vicinity of the
bounding surface whenever there exists a surface poten-
tial preferentially orienting the liquid-crystal molecules
[1-8]. Such ordering, of course, decays rapidly with dis-
tance from the boundary.

The simplest types of surface interactions are those
orienting the molecules preferentially either in or normal
to the boundary. There are then three possibilities: One,
the preferred orientation is along the normal; two, the
preferred molecular orientation is along a unique axis ly-
ing in the bounding surface; three, there is no unique axis
in the surface but the molecules lie preferentially in this
plane.

For the first two possibilities, Sheng [1,4] and, later,
Mauger et al. [6] pointed out that there were two possible
ordered surface states, both having the same symmetry.
Alternately, these two states can be regarded as “thin”
and “thick” layer phases, which are separated by a
prewetting transition. In fact, the phase diagram in [6]
was first presented from this point of view by Nakanishi
and Fisher [9]. The prewetting transition line in the
interaction-strength—temperature plane separating the
two states terminates in a critical point and much of the
subsequent literature in this area [5,7,8] uses this descrip-
tion. A review can be found in [10].

The third possibility (i.e., preferential planar orienta-
tion) was initially studied by Sluckin and Poniewierski
[7]. They pointed out that this boundary condition al-
lows surface ordered states with different symmetries to
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exist and that there can then be spontaneous phase transi-
tions between them. In particular, these authors con-
sidered an interaction potential linearly proportional to
the ordering at the surface and solved the resulting
differential equations in a limiting case (in which one of
the two symmetry-allowed elastic constants vanishes).
They indeed found that transitions between distinct, ther-
modynamically stable, ordered states could occur and
noted that, when continuous, these transitions could be
characterized by Berezinskii-Kosterlitz-Thouless (BKT)
[11,12] critical behavior.

In this work, we reconsider the Landau—de Gennes
free energy expression of Sluckin and Poniewierski and
obtain solutions for general values of the elastic con-
stants. The resulting phase diagrams have features in
common with that given in [7] but differ in some aspects.
We do find, in agreement with [7], a continuous phase
boundary, which we also calculate via the BKT ap-
proach.

In the final section, we compare our results with those
given in the literature [7,13] and comment on the similar-
ities and differences. In addition, the possibility of ob-
serving the predicted phase boundaries experimentally is
discussed.

II. THE SURFACE-INDUCED
PHASE TRANSITION BOUNDARY

A. Uniaxial phases

Consider a nematic liquid crystal confined to the half
space z>0. The appropriate Landau—de Gennes bulk
free energy is [14]
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= f d’r[L(ael;+c €] +eye;,€))
Beueﬂeh-}—y(e,j )2] (1a)

where €;; is the anisotropic (traceless) part of the dielec-
tric constant, a is proportional to a reduced temperature,
¢y, €3, B, and y are temperature-independent constants,
€;;,1 =0€;;/3x;, and we sum on repeated indices. The in-
dlces (z,],l) run from 1 to 3.
We simplify our notation by setting

€;=spy , s=B/Véy, f=F/(B'/36y°),
L=y /Ba , L8=0By/B)c,, p=cy/c; .
Then Eq. (1a) becomes

fo=[d’{

(1b)

Lepd + &2l +ppy i)
- ‘/-6I~Lij.uj1#1i + (3} (1c)

For a uniaxial system uniform in the x-y plane and
having z as one of its principal axes, the reduced tensor
order parameter u;; can always be written either as

) 2 0 0
’u,ij=76y,l(§) 0 —1 0 (Ul) , (2a)
0O 0 -1
or
1 -1 0 O
:u'ijz—\_/_—é,uz(g) 0 —1 0| (U, (2b)
0 0o 2

with {=2z /£ a normalized z coordinate [14]. For U,, the
unique direction is in the surface plane while for U, it is
normal to the surface. Substituting Egs. (2) into Eq. (1c)
and defining A as the area in the x-y plane, the normal-
ized bulk free energy becomes

fb 4 1 d:u'L _
fd§ tpl =+l ar. (t=1,2)
(3a)
Here I'y=¢/(1+p/6)?=(/w, and T,=£/(1+2p/3)1?

={/w,. The index values :=1,2 relate to U, and U,, re-
spectively.

We now supplement f, with a surface term which
models, to lowest order in the nematic order parameter,
the torques acting on the molecules at the surface. As
noted, we are specifically interested in the case wherein
these torques favor an in-plane molecular orientation.
Following Sluckin and Poniewierski [7], we therefore
take
J

fo/AE= [ dfps)8(8)
_%'V,ul(O) (Ul )

=a,vu,(0)= Vity(0)
with v=v"2/3%, which is proportional to the pinning
torque at the surface, positive.

Before proceeding, the following points should be not-
ed: The factor of (—2) in Eq. (3b) differentiating between
the two possible surface configurations is connected to
the order parameter normalization chosen in Egs. (2). By
setting u (&)= —[i,(£) /2, for example, we could make f
formally identical for the two cases. In fact, this is the
more transparent choice since, physically, the surface po-
tential energy is always minimized when the molecules lie
in the plane. Using [i,, the surface energy term would be
identical for both cases as the magnitudes of the com-
ponents of the respective order parameters normal to the
surface are then equal. Our normalization, however, is
more convenient mathematically as the expressions for
the bulk free energy are then formally identical. The final
result, of course, is independent of the choice of order pa-
rameter normalization.

In order for the surface energy f, to make the total
system free energy negative above T, (i.e., for t > 1), it is
necessary that u,(0) be negative. (The bulk energy f, is,
of course, always positive for # >1.) On the other hand,
this negative amplitude increases f, (via the cubic term).
It is this competition between the surface and bulk con-
tributions to the total free energy which makes possible a
phase transition between surface states when ¢ > 1.

Minimizing the total free energy f=f,+f, yields a
variational equation for u, whose first integral is

EPLZ
dr

1
= =Ll —p’+put. )

For clarity, we have suppressed the ¢ subscripts on u and
I'. Integrating Eq. (4) gives

1t
2
1+ V't —1sinh(£V7 T+ )

where the upper and lower signs refer to t=1,2, respec-
tively, and the phase 1, (whose ¢ subscript has also been
suppressed) is directly related to u({=I'=0)=

From Egs. (3a) and (4), it is clear that

———-'—=—f d¢ wfowdl“

where we have again suppressed the subscripts (on u, ,
and I'). Using Eq. (5), we obtain

2
a1 (e

ar

_d_y_
dr

(7a)
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The surface free energy f is given in terms of u, by
Eq. (3b). Alternately, it can be written as

s _

A§
Thus we need only determine p, as a function of v and ¢.
This is done by integrating the variational equation for

through an infinitesimal interval about =0 [15]. The re-
sult is

—%(24#3)(@3—4,10“)“2 . (7b)

dp
dr

0 @

where [see Eq. 3)] ;= — 1, a,=1, and the derivative is
evaluated at {=0. Using Eq. (4), Eq. (8) yields the quar-
tic equation

t 2 a2V2

S—uyt+— =0
Ho™ Mo 4/‘"0 4(02 > (9)

whose solution gives the appropriate values of u, for U,
and U,, respectively.

For U, (in-plane uniaxial state), uo=pu,(0) >0 and Eq.
(9) has either one or three real and positive solutions.
The single solution is always locally stable; when there
are three solutions, two are locally stable. For the latter
case, there is a “shelf” in the (¢,v,p) parameter space
which defines the thermodynamic boundary between the
two stable solutions. This is a prewetting transition line.
(Mauger et al. [6] referred to it as the boundary between
“weak” and “strong” surface states.) This shelf is bound-
ed, at r=1, by the line v=(2V3—3)"2(1+p/6)!/2/8
and, at t=3, by the line of critical points
v=3V3(1+p)!/2/32. Above the shelf, the thick or
‘“strong” state is energetically preferred, below it, the thin
or “weak” one. For t>%, the two states are indistin-
guishable.

For U, (in-plane isotropic state), p,=pu,(0) <0 and Eq.
(9) has only a single real and negative (and stable) solu-
tion. Thus, for the case of uniaxial surface states, our
analysis reduces to (a) calculating, for given (¢,v,p), u,(0),
and u,(0), [for 1<t<2, the u,(0) solution giving the
lower free energy is chosen], (b) using Egs. (7) to obtain
f=f,tf, for both cases, and (c) finding the phase
boundary separating the regions in the parameter space
where f, <f, and vice versa. On the f;=f, boundary,
there is a first-order phase transition between the two
uniaxial surface states.

The above procedure was carried out numerically; the
results are summarized in Fig. 1. We see that there
indeed exists a region in the phase diagram in which the
in-plane uniaxial surface state is thermodynamically
stable. This region is bounded, for fixed p, by the t =1
boundary at which the bulk transition occurs and by a
closed curve intersecting the ¢ =1 line at the minimal and
maximal values of v for which the in-plane uniaxial phase
is stable. The curve reaches its maximum ¢ value at an
intermediate value of v. Of course, these v values are all
p dependent.

We also find that the first-order phase boundary lies,
for all physically relevant values of p and 1<t < %, above
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FIG. 1. Phase boundary in the (temperature)-(surface poten-
tial amplitude) (¢-v) plane between uniaxially ordered surface
states with the unique axis parallel (in-plane uniaxial phase—to
the left of the curves) and normal (in-plane isotropic phase) to
the plane of the boundary. Shown are theoretical boundaries
for different values of the Landau elastic constant ratio p. The
bulk phase is disordered for 7 > 1.

the prewetting transition or “weak-strong shelf.”” That is,
the transition from the in-plane isotropic to in-plane uni-
axial state always results in the latter being in the so-
called thick or “strong” state or, in other words, the
prewetting transition is preempted. For this reason, this
prewetting line is not shown in the figure.

B. The biaxial phase

The analysis given in Sec. II A and summarized graphi-
cally in Fig. 1, while exact, is restricted since only states
characterized by uniaxial ordering were allowed. We
now relax this restriction in order to study possible biaxi-
al surface ordering. Indeed, a solution of this type was
found by Sluckin and Poniewierski [7] (whose analysis, in
our notation, corresponds to the regime p— ).

The general biaxial case can be studied by considering
a tensor order parameter having the form

21, 0 0
_1
By=e | 0 Tk 0 (B;) . (10a)
0 0 —Hitm

For |n,(£)| << |u,(£)| this can be regarded as a perturba-
tion on the U, uniaxial order parameter given in Eq. (2a).
Of course, one could equally consider the alternate for-
mulation [see Eq. (2b)]

—Hy T, 0 0
”ljzv_g‘ O _‘LLZ_TIZ 0 (Bz) . (IOb)
0 0 2,

For unrestricted values of u, and 7, (t=1,2), these two
formulations are equivalent. However, it will be con-
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venient to use these alternate forms whenever the 7, are
considered as perturbations of the respective uniaxial
solutions found in Sec. ITA.

The alternate order parameters given above yield
different expressions for the total free energy f=f, + f
of a biaxial phase. Thus, using Eq. (10a), we obtain

1 1 2
= [ d¢ | g+ Toni—ut+uod+ut+ Suing
+ Loty 2( B S PRAS [T
9 Y 2 |
— L | (11a)
fo/ AE=—2[p,(0)—7,(0)] (11b)

while the alternative, Eq. (10b), gives

LA [ d¢ -t#z tnz #%+.uzn%+u‘z‘+§—#%n§
14, @ 0 10
Mt () (12a)
£/ AE=vuy(0) . (12b)

The prime in these equations denotes differentiation with
respect to §.

Minimizing the total energy f yields, for either choice
of biaxial order parameter, two coupled nonlinear
differential equations, with no apparent analytic solution.
We choose, therefore, to use a method giving an upper
bound on the true ground-state energy for given (¢,v,p).
Our approach (known as a Ritz procedure) was to (a) sub-
stitute, in Eq. (11) or (12), the function u,(§) (t=1,2, re-
spectively), given in Eq. (5) [i.e., the exact solutions for
7n,£)=0] and (b) use a trial function for 7,(§). Incor-
porated in the latter are a small number (we choose two)
of parameters which are ultimately fixed by the minimi-
zation of the free energy.

Our choice of trial functions 7,({) was governed by
two considerations: (1) they must vanish as {— o, and
(2) they should permit an analytic evaluation of the in-
tegrals in f,. The latter, of course, is for convenience of
calculation while the former is an absolute requirement.
Our choice was

Lat
— 24" i 13
M = A Snh[ V1 £/ T o] 13

where, as in Eq. (5), the ¢ subscripts (here on 7, o, ¥, a,
and b) have been suppressed.

Consider first B,. Since there are terms in f [see Eq.
(11)] which are linear in 1, (and its derivative), it follows
that U, is always unstable with respect to biaxiality.
Thus the U, region in the phase diagram of Fig. 1 will be
entirely replaced by one with biaxial order once the uniax-
ial order parameter constraint is relaxed.

For B,, on the other hand, there are no contributions
to f linear in 7, or its derivatives. Thus the U, uniaxial
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phase can be stable and it follows that a continuous
(second-order transition) between U, and a biaxially or-
dered phase is, in principle, possible.

Quantitative verification of these general observations
was obtained by substituting Egs. (5) and (13) into Eqgs.
(11) and (12), respectively, and calculating analytically
the energy functionals f(B;[a,b]) and f(B,;[a,b]). For
B,, the boundary condition is unchanged from the U,
uniaxial case [see Eq. (12b)] and is [a,b] independent
while, for B, there is an additional contribution propor-
tional to 7,(0) [see Eq. (11b)]. The latter is [a,b] depen-
dent and was included in f(B;;[a,b]). The two free en-
ergy functionals were then minimized numerically with
respect to the parameters [a,b] at points in the (¢-v)
phase diagram for fixed elastic constant ratio p. The re-
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FIG. 2. Landau theory phase boundaries in the

(temperature)-(surface potential amplitude) (¢-v) plane between
surface states with different ordering for the elastic constant ra-
tio p=0. Shown are a high-temperature in-plane isotropic uni-
axially ordered phase and a biaxial phase. The latter is divided
into two regions having the same symmetry but separated by a
first-order phase boundary (denoted by a heavy broken line).
The lower part (shown as a heavy full line) of the boundary be-
tween the unaxial and biaxial phases is first order while the
upper part (light broken line) is continuous. Also shown (light
full line) is the Berezinskii-Kosterlitz-Thouless transition
boundary, which is the relevant one for two-dimensional sys-
tems. (b) is an enlargement of the lower-left-hand section of (a).
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sulting free energy values were then compared with each
other and with those of the uniaxial phases U;,U,. The
results, for p=0, 1, and 10, are summarized graphically
in Figs. 2-4.

As expected, we find that the U, phase (see Fig. 1) no
longer appears—it is replaced by a biaxial one. Howev-
er, U, does remain stable in a region of the phase dia-
gram and there is either a second-order transition bound-
ary between it and the B, biaxial phase or (for small v) a
first-order transition between it and the B, biaxial phase.

We also find a discontinuous (first-order or prewetting)
transition boundary between the B, and B, regions.
However, this result must be regarded cautiously: These
phases have the same symmetry and thus, in principle,
the phase boundary between them could terminate in a
critical point (analogous to that found in liquid-gas phase
diagrams or for the case of a positive dielectric anisotro-
py nematic liquid crystal in an external field [10]). Given
the nature of the approximation we are using (wherein B,
and B, are obtained by adding biaxial trial functions to
the uniaxial solutions U, and U,, respectively), such a
critical point, if it indeed exists, would not be found. We
shall return to this point in Sec. ITI.
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FIG. 3. Phase boundaries in the (temperature)-(surface po-
tential amplitude) (¢z-v) plane between surface states with
different ordering for the elastic constant ratio p=1. Other de-
tails as in Fig. 2.

C. The Berezinskii-Kosterlitz-Thouless phase transition

In Sec. II B, we found, via Landau theory, a continuous
phase boundary between a uniaxial surface state and a bi-
axial one in a region of the (temperature)-(surface interac-
tion potential magnitude) (¢-v) phase diagram. However,
since this transition is between surface ordered states, it is
fundamentally two dimensional in character and fluctua-
tion effects are therefore of central importance.

As shown by BKT [11,12], the fluctuations relevant to
continuous phase transitions in two-dimensional systems
are long-wavelength in-plane phase distortions of the
relevant order parameter. For nematic liquid crystals,
these are associated with free energy terms of the form
[12,16]

Fegr=1K [ d*r(V0)?, (14)

where 6=0(x,y) is the fluctuating in-plane angle between
a local in-plane principal axis and a fixed reference axis
and X is a stiffness (elastic) constant.

In our case, we have an ordered layer of finite thickness
rather than a true two-dimensional system. However,
near the transition boundary, the layer may be regarded
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FIG. 4. Phase boundaries in the (temperature)-(surface po-
tential amplitude) (z-v) plane between surface states with
different ordering for the elastic constant ratio p=10. Other de-
tails as in Fig. 2.
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as effectively two dimensional, with the relevant fluctua-
tions characterized by an effective stiffness K, which is
connected with the bulk free energy coefficients 8 and y
and the elastic moduli ¢;,c,. To see this, we return to
Eq. (Ic) and note that fluctuations contribute to f, via
the terms

B
Fe]astic= 36’)/3 felastic
_|aF 30,2
= 1292 Jf a r(pi+puriitg) - (15a)

For the case of the continuous phase transition between
U, and B,, the symmetry-breaking order parameter is
the biaxial component 7, of u;; [see Eq. (10b)]. The part
of p;; relevant to in-plane angular (i.e., phase) fluctua-
tions can then be written as [13,16]

Y. L’VOV, R. M. HORNREICH, AND D. W. ALLENDER 48

Substituting Eq. (15b) into Eq. (15a) and comparing
with Eq. (14) gives

FBKT=%KI, [ d*(vey?

_11|28 ®
=7 | 5,2 |9 [1+121 f0+dgn§(§)]
X [d*(voy . (16)

Since there is no purely two-dimensional system in ad-
dition to the ordered surface layer, the critical tempera-
ture of the BKT phase transition is given by [16]

. 8
1 K,=—kgT
Pl Ko= ke Ts )

1 cos20  sin26 where kp is Boltzmann’s constant. Using Egs. (13) and
(1 Jauc= :/76772(;) sin26 —cos26 | ° (15b) (16), we then have
J
Vi (e 3/2 ~ 5 172
=TV | L 2,3/2 P P 2y—1
= t 1+ 1+
kyTs="_> y] Ba’t3 l 21+ a+ed
X{—1— b coshyy 2 arctanh 14 +arctanh L M)_b (18)
1+bsinhyyy  V1+p2 V1+b2 V1+b? '
In order to evaluate z, in Eq. (18), we require represen- = 3/2_ 2
tative values for the parameters 3, v, ¢, and p. These G=2VLB’v/D*?=1.2v ergs/cm” . (20)

will be introduced in the following section, where we also
calculate the BKT transition boundary.

III. DISCUSSION

In the preceding section, we showed that, under
specified boundary conditions, a new type of phase transi-
tion can occur in an ordered surface layer even though
the bulk nematic system is disordered. Here, we intro-
duce representative values for the system parameters, cal-
culate the BKT transition boundary, compare our results
with those in the literature, and consider possible ways of
observing the predicted transition experimentally.

In order to obtain physical values for the parameters in
the free energy, we make use of the standard expression

[4]
F= [ dz[ AS*—BS*+DS*+L(dS /dz*+a,GS8(2)] .

(19)

Comparing this expression with Egs. (2) and (3), we set
u=SD/B, ¢=Bz/2VLD, v=D*?G/2V'LB? and
f=D3?F/2VL B3. Taking as typical values [4,17]
B=B/V6=0.53X10" ergs/cm’, D=y=0.98X10’
ergs/cm’, and L =1c, =4.5X 1077 ergs/cm, we obtain

Thus v=1.0 is equivalent to G=1.2 ergs/cm? This
value of G, which is in the theoretically interesting range,
can be compared with experimental determinations of G,
or with measurements of anchoring energy, W, by means
of the relationship W =~3G|S(0)|. From an analysis of
birefringence data on 4-cyano-4'-n-pentabiphenyl (5CB),
Yokoyama [18,19] reported G ~ 38 ergs/cm? for a rubbed
polyvinyl alcohol coated surface, but only 0.85 erg/cm?
for a SiO film on the substrate. Furthermore, a review of
measurements of anchoring energies [20] notes that
values of W range from 1 down to 10~ % erg/cm?. Thus it
is expected that surfaces with appropriate interaction po-
tentials to test the predicted phase transition can be
prepared.

Assuming that the required conditions on the surface
potential can be met, the reduced BKT transition temper-
ature fg between the high-temperature uniaxial phase U,
and the biaxial phase B, can be calculated using the
representative parameters given above and Eq. (18) and
taking T, =~Ts~350 K. The results, for p=0, 1, and 10,
respectively, are given in Figs. 2—4. As expected, we see
that the biaxially ordered phase becomes unstable with
respect to long-wavelength in-plane fluctuations before
(i.e., at a lower temperature) the mean-field phase bound-
ary is reached. Since it is the BKT-type instability which
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is expected to be relevant for the phase transition, it is
this boundary which must be sought experimentally.
Note that the BKT transition preempts the usual [1,4,6,9]
prewetting line; however, the latter may now occur on
the B,-B, transition boundary.

From Figs. 2—4, we see that the ¢-v plane phase dia-
gram has the same topology for all three values of p stud-
ied. In particular, the two-dimensional BKT-type phase
transition occurs for all p values in a finite range of sur-
face interaction potential strengths, with the latter in-
creasing with increasing p. This feature thus appears to
be universal.

The reentrant behavior of the uniaxial-biaxial phase
transition boundary is, at first, somewhat surprising. In-
tuitively, one might expect this boundary to shift mono-
tonically to higher ¢ values with increasing v. However,
since the surface free energy contribution (12b) is in-
dependent of 7),, the key factor is the v dependence of
|n,] at the phase boundary. For small v, |7,| increases
with increasing v but, eventually, it will decrease when v
is sufficiently large. This is due to the quadratic and
higher-order |7,| terms in (12a), all of which increase f.
The result will be an incremental decrease in the
uniaxial-biaxial transition temperature at high v values,
yielding reentrant behavior.

Sluckin and Poniewierski [7], in their earlier analysis,
considered analytically the special case (in our notation)
p— . In order to make contact with their result, the
(otherwise unphysical) value p=10 was considered by us
here (see Fig. 4). Comparing our phase diagram with
that in Ref. [7] (the latter for the case of zero external
field), we find general agreement. There are only two rel-
atively minor differences: First, Sluckin and Poniewierski
find that the first-order transition line between (in our no-
tation) the B; and B, phases ends in a critical point. As
we noted earlier, this is indeed possible on symmetry
grounds and, if occurring, would not be found by us due
to the nature of the Ritz procedure used. We note that
consequently there are at least three possible scenarios—
the critical point may be particular to the case p— o, it
may exist only for sufficiently large values of p, or it may
exist for all p values. This point still remains open.

Second, Sluckin and Poniewierski suggested alternate
possibilities for the location of the BKT line at large v
values. We find that the BKT line ends on the bulk phase
transition boundary (i.e., t=1) at the large but finite
value of v for all p values. However, since this line is cal-
culated with respect to the Landau theory phase bound-
ary obtained via the Ritz procedure, it is still possible
that the BKT boundary is asymptotically parallel to t =1
for sufficiently large p.

Finally, we note that Sluckin and Poniewierski argued
that the qualitative nature of the (¢z-v) plane phase dia-
gram should not change when the p— c constraint is re-
laxed. This is confirmed by our direct calculation of the
phase boundaries (including the BKT transition line) for
specific p values.

It is also of interest to compare the results obtained
here with those reported for the case of a surface poten-
tial quadratic in the components of the tensor order pa-
rameter [13]. In that case, the existence of a BKT phase

boundary was also predicted. However, the details are
different. For the case of a surface interaction potential
linear in the order parameter, the transition (as found by
us here) is necessarily between two ordered states. That
is, the surface interaction is analogous to a local external
field and always (i.e., at all temperatures above the bulk
ordering temperature) leads to ordering in a surface layer.
Thus the BKT transition is between two ordered surface
states, a higher-temperature one characterized by uniaxi-
al order and a lower-temperature one with biaxial order-
ing.

For the case of quadratic coupling, on the other hand,
the situation is analogous to having a local anisotropy
rather than a local applied field. In this case, the higher-
temperature phase will be one with complete disorder
(both bulk and surface) and the BKT transition is to a
lower-temperature ordered surface state [13]. However,
in both cases, the experimental techniques required to
detect a BKT-type phase transition are identical.

Experimentally, one way of observing this phase transi-
tion would be using the evanescent-wave ellipsometry
technique developed by Chen et al. [21]. Here one mea-
sures the phase difference A between p- and s-polarized
radiation incident at the critical angle and totally
reflected from the liquid-crystal—substrate interface.
This phase difference is directly proportional to the in-
tegrated birefringence at the surface.

In our case, the higher-temperature phase is isotropic
in the interface plane and thus nonbirefringent. The
lower-temperature (biaxial) state, on the other hand, is
birefringent and thus the phase transition should, in prin-
ciple, be observable by this approach. However, as noted
elsewhere [13], the confirmation of the BKT character of
this transition by this technique would be difficult as it
probes only the singularities associated with static critical
behavior, which are very weak for this type of transition.

A much more attractive approach, therefore, is to
study the dynamics of the critical behavior via inelastic
light scattering measurements. Expressions for the
scattering intensities to be expected in nematic liquid-
crystal systems have been given [13] and can be used to
obtain direct experimental confirmation of a BKT-type
surface phase transition in such materials.

In summary, we have shown that a new kind of
symmetry-breaking surface phase transition is possible in
nematic liquid crystals with appropriate boundary condi-
tions. The latter should be attainable in practice and thus
the detailed theoretical predictions given here can be test-
ed experimentally. An interesting extension of this work
would be to consider the effect of a field applied perpen-
dicular to the boundary on the surface ordering for nega-
tive anisotropy materials. For a bulk nematic phase, it is
known to result in a tricritical point in the phase diagram
[22].
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